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An incompressible fluid of constant thermal diffusivity D flows with velocity 
u = 8/3(wt) y in the x direction, where S is a scaling factor for the velocity 
gradient at  the wall y = 0, and P(wt )  is a positive function of time t ,  with charac - 
teristic frequency o. The region 0 < x < 1 of the wall is occupied by a heated film 
of temperature T,,  the rest of the wall being insulating. Par from the film the 
fluid temperature is To < TI. Using boundary-layer theory, we calculate the heat 
transfer from the film by means of two asymptotic expansions, a regular one for 
small values of the frequency parameter E ( X )  = w(9x)$D+Xf and a singular 
one (requiring the use of matched asymptotic expansions) for large values of' E .  

We notice the appearance of eigenfunctions in the large-s expansion, where they 
are to be expected on physical grounds in order to take account of upstream 
conditions. Numerical computations are made for the case of sinusoidal oscilla- 
tions, where P ( w t )  = 1 +asinwt, a < 1 (three values of a, = 0.2, 0.5, 0.8, were 
chosen); there is seen to be no satisfactory overlap between the two expansions- 
the small-s expansion is quite accurate for e < 5.0 (especially for the smaller 
values of a)  and the large-s expansion is quite accurate for e > 10-0. Approximate 
overlap is declared to occur at  E = 8.0. 

The theory is used to calculate the response in oscillatory flow of the hot-film 
anemometer developed by Seed & Wood (1970a, b )  to measure blood velocities 
in large arteries. The velocity gradient over the film (embedded in the surface 
of a larger probe) is obtained from the theory of the companion paper (Pedley 
1972) on the assumption that the probe resembles a semi-infinite flat plate. The 
deviations observed in unsteady calibration experiments between the unsteady 
response of the anemometer and its steady response are predicted qualitatively 
by the theory, but quantitative agreement is in general unsatisfactory. The 
probable sources of this error, and the possibility of removing them, are dis- 
cussed. The quasi-steady calibration curve used by Seed & Wood (1971) is 
suspect at  low instantaneous velocities, but is shown to be adequate for the 
turbulence measurements of Nerem & Seed (1972). The theory is also applied to 
the experiments of Car0 & Nerem (1972) on mass transfer to segments of arterial 
wall, and it is shown that oscillations characteristic of the cardiovascular system 
will have a negligible effect on the mean mass transfer. 

t Also Department of Mathematics. 
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1. Introduction 
This work was begun in an attempt to predict the behaviour in a general 

unsteady flow of the constant-temperature hot-film anemometer which has 
recently been developed by Seed & Wood (l969,1970a, b)  to measure the velocity 
of blood in large arteries.? A thin gold film is mounted flush with the surface of 
an insulating probe and is inserted into an artery in such a way that the film is 
set transversely to the axis of the artery, i.e. to the direction of blood flow. 
Figure 1 shows schematically a lateral cross-section of one of the probes most 
frequently used in the early stages of development (from Seed & Wood 1970a, 
figure 2(c); 1970b, figure 1 (a)) .  The breadth I of the film in the direction of fluid 
motion is 0.01 cin and its length L in the perpendicular direction is 0.05 em. 
Its  leading edge 0 is situated a distance x,, z 0.15 em from the leading edge of 
the probe. The film is maintained a t  a temperature slightly higher than that of 
the ambient fluid (blood), and the power required so to maintain it is proportional 
to the heat loss to  the fluid. In  steady flow this forced convective heat loss is 
proportional to the cube root of the local wall shear, or skin friction (Liepmann & 
Skinner 1954), and hence to the square root of the fluid velocity outside the 
viscous boundary layer on the probe. In  unsteady flow, on the other hand, the 
heat transfer a t  time t will not be simply related to the local wall shear a t  that 
time, which in turn will not be simply related to the stream velocity. In  particular, 
even in small amplitude oscillatory flow, the wall shear has a phase lead over the 
stream velocity (Lighthill 1954), and the heat transfer a phase lag behind the 
local wall shear (Bellhouse & Schultz 1968), as well as an amplitude change. 
Furthermore, for larger amplitude oscillations, there will be a secondary effect 
on the mean response (Gersten 1965; Fagela-Alabastro & Hellums 1969). Thus 
a detailed examination of the response to be expected from this probe in large 
amplitude unsteady flow like that of blood in the arteries is desirable. In  par- 
ticular, we seek a prediction of the response in pure sinusoidal oscillatory flow, 
to be compared with the detailed measurements made with the probe in a known 
flow of this type during unsteady calibration studies in both water and blood 
(Seed & Wood 1969). 

As already suggested, the problem can be divided into two parts, concerning 
first the relationship between local wall shear and stream velocity, and second, 
that between film heat transfer and local wall shear. The first problem is treated 
in the companion paper (Pedley 1972); in this paper we examine the second prob- 
lem in some detail. 

We start by making a number of simplifying assumptions. The first is that 
the problem is two-dimensional. This requires both that the geometry of the 
probe does not cause the wall shear to vary with distance perpendicular to the 
plane of figure 1 and that the length L of the film in this direction greatly exceeds 
its breadth 1 in the direction of flow. Neither requirement is completely satisfied, 
although the first is reasonable for the probe under discussion since the top 
surface of the probe is almost flat in the transverse plane, and the film does not 

t See also Nerem, Seed & Wood (1972). 
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FIGURE 1. Schematic view of the hot-film probe. The large arrow 
represents the direction of blood flow. 

extend to the edges. More recent probes, however, like that of Seed & Wood 
(1970b), have the aspect of a slightly yawed cone, and the three-dimensionality 
of the flow past them must be considered. The second requirement is not very 
well satisfied, since IfL = 0.2, and the assumption of two-dimensionality can be 
only a first approximation. The errors introduced by neglecting transverse heat 
loss and the transverse curvature of the flow are currently being examined. We 
also assume that the film is flat (in the direction of flow) and is short enough for 
the wall shear to be effectively constant along the whole of the length 1, which 
requires in this case that l fq ,  be small; it is approximately 0.07 for the probe 
considered here. 

A further assumption, implicit hitherto, is that the only parameter of the 
fluid motion which affects film heat transfer is the wall shear, i.e. that the velocity 
profile is effectively linear throughout the region in which the fluid temperature 
varies between its value at  the film to its value in the oncoming fluid. This re- 
quires that the length scale for velocity variations normal to the probe, say the 
viscous boundary-layer thickness 8, is much greater than the maximum value of 
the thickness 6, of the thermal boundary layer over the hot film. We also assume 
that longitudinal convection dominates lateral convection, i.e. that the normal 
component of velocity is effectively zero within the thermal boundary layer. The 
validity of these assumptions is examined below (p. 351). Other simplifications 
in the model to be discussed here are the neglect of (i) heat loss through the glass 
substrate in which the hot-film is embedded, valid when the thermal conductivity 
of the fluid is as high as that of water or blood, but not valid when it is as low 
as that of air (see Bellhouse & Schultz 1967); and (ii) free convective heat loss, 
which requires that the temperature difference between the hot film and the 
oncoming fluid be small. 

The problem can now be formulated as follows (see figure 2). An incompressible 
fluid of constant thermal diffusivity D occupies the region y > 0 and flows with 
velocity 

u = x p ( w t )  y (1.1) 
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FIGURE 2. Statement of the problem to be solved. 

in the x direction. Here S is a scaling factor for the wall shear and /3(ot) is a func- 
tion describing the dependence of the shear on time t ,  with characteristic fre- 
quency 0; for steady flow we would take /3 = 1. The temperature of the fluid far 
from the wall is T = To; the regions x < 0 and x > 1 of the wall consist of in- 
sulating material, so that the boundary condition aT/ay = 0 is appropriate there; 
the region 0 < x < 1 of the wall is maintained a t  temperature T = TI > To. We 
wish to calculate the heat transfer from the heated region, per unit area in the 
x, z plane (the z direction being perpendicular to the x, y plane), defined as 

a(x,t) = -Pq / ’ , I ,=o ,  (1.2) 

where p is the density of the fluid. The total heat transfer from the heated region, 
per unit length in the x direction, is 

1 

0 
&(t) = / q(x ,  9 dx. (1.3) 

The equation governing the distribution of temperature in the fluid is the heat 
equation T,+uT, = D(T,,+T,,). 

We may note that the problem as posed above is relevant to mass transfer as 
well as to heat transfer; the theory may be used to calculate the uptake of solute 
from a limited source embedded in a wall over which there is an unsteady shear 
flow. Indeed, the problem studied here is similar to that solved for small ampli- 
tude sinusoidal oscillations by Fagela-Alabastro & Hellums ( 1969)) with reference 
to fully developed oscillatory flow in the diffusion entrance region of a pipe. 
In  that paper, however, the problem of calculating the temperature field is not 
adequately decoupled from that of determining the velocity field in the pipe 
(see 0 6 below). 

Recent experiments on the transport of large molecular species (e.g. lipids and 
proteins) between the blood and artery walls fall into this class (Caro & Nerem 
1972). If the rate-controlling process is diffusion across the boundary layer, then 
the rate of mass transfer will be influenced by the wall shear. A shear-dependent 
mass transport process is necessary in order to explain the distribution of early 
atheroma (the initial stages of ‘hardening of the arteries’), associated with 
a local accumulation of lipid, in regions of artery wall where the mean shear rate 
is low (Caro, Fitz-Gerald & Schroter 1971). In  the model experiments of Caro & 
Nerem, blood is passed through a long, circular, inert tube of radius 0.15cm, 
from which a section of length 5 cm has been removed and replaced by a section 

(1.4) 
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of a dog’s common carotid artery. The blood contains radio-actively labelled 
cholesterol, in known concentration C,, and the flow through the test section is 
Poiseuille flow. After a time the radio-activity in the artery wall is measured as 
a function of x, the distance from the start of the test section. Assuming that only 
a small amount of the labelled cholesterol enters the wall, the measured quantity 
is proportional to the local rate of mass transfer across the wall. The experiments 
have so far been conducted only in steady flow, and are only at a preliminary 
stage. If the rate of flux into the wall turns out to vary as x-*, which is the 
theoretical prediction (see below), it will be consistent with the hypothesis that 
choIestero1 transport is governed significantly by diffusion in the blood. Since 
blood flow in. vivo is unsteady, a series of experiments should then be performed 
with a known unsteady (sinusoidal) flow. As long as the flow nowhere reverses 
(see below) this experiment is described by the present theory, a t  least if the 
thickness of the diffusion boundary layer is much smaller than the tube radius. 
As we shall see, the low diffusivity of cholesterol in blood ensures a very thin 
boundary layer over the artery segment. 

The theory is developedin the next three sections. It will of course be applicable 
to both the heat- and the mass-transfer experiments outlined above but, to 
avoid repetition, we present the discussion everywhere in terms of the heat- 
transfer problem. The theory is applied directly to the hot-film anemometer 
experiments in 0 5 and to the cholesterol transport experiment in 0 6. 

2. The boundary-layer approximation 
The main simplifying approximation still to be made is the boundary-layer 

approximation, which leads to the neglect of the Tzz term on the right-hand side 
of (1.4) and makes the equation parabolic in x. This means that the solution at  
a distance x from 0 depends only on the solution for smaller values of x and can 
be constructed without reference to downstream conditions. This imposes the 
additional constraint that u be everywhere positive. If u became negative, the 
point x = 0 would have to be taken a t  the other end of the hot film, and conditions 
outside the new boundary layer would depend on the temperature in the old 
boundary layer and wake, which are themselves still diffusing. This is a very 
difficult problem, so in this paper we take /3(wt), and hence u, to be always positive. 
The condition outside the thermal boundary layer is now very simple, and is that 
T = To, the temperature of the oncoming fluid. Furthermore, the only wall 
boundary condition to enter the problem is in the region 0 6 x < 1, where T = TI. 

We assume that the boundary-layer approximation is valid everywhere over 
the hot film. This will be inaccurate in the neighbourhood of the leading edge 0 
and of the trailing edge (x = 1). Ling (1963) has derived numerical solutions of the 
steady problem in these regions and in the thermal wake behind the hot film, 
and has concluded that the boundary-layer solution is accurate everywhere if the 
PBclet number N, > 5000, where 

NL = SP/D. (2.1) 

Even for much smaller values of NL, however, the boundary-layer solution gives 
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values for the heat transfer which are accurate to within 5 %  (from Ling’s 

(2.2) 
figure 6) for 

This condition, a more refined form of the conditions S,/x < 1 and S,/(l- x) < 1, 
must be verified before application of the results of this theory can justifiably 
be made. 

Let us write the boundary-layer form of (1.4) in terms of the dimensionless 
temperature and time, 

0*5N,* < $11 < 1 - 0 - 7 N ~ ) .  

e = (T - T~)/(T~- T~), = wt, 

while leaving x and y in dimensional form for now. Using (1.1) for u, the equation 
becomes 

w0, + Sp(7) = DO,,. 
In the steady case, when the first term is absent and p 3 1, the two other terms 
must be of the same order of magnitude, so if the length scale for x variations is 
x itself (as in all boundary-layer theories), then the length scale for y variations, 
the boundary-layer thickness S,, is given by 

(2-3) 

8% = Dx/S. 

The same scaling is also appropriate in the unsteady case, at least when the 
frequency w is small enough. Let us therefore define a dimensionless similarity 
variable 

Equation (2.3) now becomes 
T/ = [S+/(SDX)*] y. (2.4) 

B~,, (3720, - wxe,) = w e,, (2.5) 

where E(5) = w(Sx)~/DW (2.6) 

and may be called the frequency parameter in this problem. The boundary 
conditions on 8 are 

8 = 1  on ~ = 0 ,  8 + 0  as 7-too. (2.7) 

As far as possible we shall try to solve the problem for an arbitrary positive 
function p(7). Where it is necessary to be specific, in particular for the calculation 
of numerical results, we let p be a sinusoidally oscillating function: 

p(7) = 1 + a sin 7, (2.8) 

where a is an amplitude parameter less than 1. Note that a! need not be much 
smaller than 1; it is necessary only that 

s/[min (p)]+ = O(s) as B -+ o (2.9) 

(see below). When p is given by (2.8), we shall seek solutions which are periodic 
in time. 

Even with this simple form for the function p, an analytical solution to the 
problem is not possible for arbitrary values of E ( x ; ) .  However, as in the problem 
of the oscillatory viscous boundary layer, it is possible to obtain asymptotic 
solutions for small E and for large s; the solutions consist of asymptotic series in 
powers of s and E-* respectively. In  the limit E -+ 0 the solution is clearly the same 



Unsteady forced heat transfer f r o m  a hot Jilm 335 

as in the steady case, but with /3 taking its instantaneous value (the quasi-steady 
solution). For small e one might therefore expect a regular perturbation about 
the quasi-steady solution; this asymptotic limit is examined in 0 3. For large e, 
on the other hand, the coefficient of the highest derivative eq, is small compared 
with that of another term (Or ) .  This is a classic situation for singular perturbation 
theory, and the solution is sought by the method of matched asymptotic ex- 
pansions (Van Dyke 1964). It is clear that the inner expansion will represent the 
balance between the first and the third terms of (2.3), so that the thickness of the 
inner boundary layer (a thermal Stokes layer) is 

8, = (D/U)+ 

g = ( W / D ) + Y ;  (2.10) 

and a suitable inner variable is 

a suitable outer variable is still 7. The analysis for this case is carried out in Q 4. 

3. Asymptotic expansion for small ~ ( x )  
When e (x )  is zero the right-hand side of (2.5) vanishes and the fact that P(T) 

is not constant does not affect the solution, which will be the quasi-steady solution. 
Let us define a new similarity variable 

rl = P“d r ,  (3.1) 

in terms of which the governing equation becomes 

where 1 = dp/dr. The boundary conditions are given by (2.7) with 7‘ replacing 7. 
We seek a solution in the form 

which is still a similarity solution in that all x dependence is contained in E ( x ) ,  
which is proportional to x8 (see equation (2.6)).  By substituting (3.3) into (3.2) 
and equating like powers of ~ ( x ) ,  we obtain a sequence of differential equations for 
the functions Om(f ,r)  (m = 0,1,2,  ...) as follows: 

em,.q. + 3f26,,, - 6m8, = F,(~I,  T I ,  (3.4) 

where Fo = 0, Fl = A(r) v18,,,, F, = /3-%(~) 4, + A(T) 7’6,,, 

and A(r) = gp(r)p-+(T).  

The boundary conditions at 7‘ = 0 are 6, = 1, Om,, = 0, and as 7’ -+ a, 0, -+ 0. 
The zero-order (quasi-steady) solution of (3.4) with m = 0, and the relevant 

boundary conditions, is 

where i /C = e-t’dt = I?(+). 1: 
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This solution was first obtained by LBv&que (1928) and forms the basis for the 
steady calibration of hot-film anemometers. Equation (3.4) with m = 1 suggests 
that 8, takes the form 

4 = WFl(f ) ,  
with 4 satisfying the differential equation 

Fi + 3yf2F; - 6y’F1 = - Cy’ e+’, 

(3.7) 

(3.8) 

where a prime (on Ell) means d / d f .  The solution of this equation, subject to the 
boundary conditions Fl(0) = O , F l ( c o )  = 0 ,  is 

where U(a,  b,  x )  is Kummer’s notation for the confluent hypergeometric func- 
tion of the second kind (see Abramowitz & Stegun 1965, p. 504). With m = 2, 
equation (3.4) together with (3.7) indicates that 8, has the form 

8 2  = h2(r) FzFIzl(rf) +&M-W F22(7’L (3.10) 

where (3.11) 

and F2, satisfies the same boundary conditions as Fl. It is the form of (3.7) and 
(3.10) which imposes the restriction (2.9). The solutions to (3.11) can be ex- 
pressed in terms of integrals of products of confluent hypergeometric functions, 
but for the purpose of obtaining numerical results it is simpler to integrate both 
these equations and (3.8) directly on a computer. The accuracy of the computa- 
tions was checked by comparing the computed value of Fi(0) with its value 
obtained from (3.9), viz. 

the two values were identical to six significant figures. 

F;(o) = pry;)/r2(+); 

The heat transfer (1.2) is given in dimensionless terms by 

where 

87r17r=o = Bh(0) + e ( ~ ) h ( ~ ) P ; ( o )  f e z ( % )  [h2(r)Fk1(0) + A ( ~ ) , ~ - Q ( T ) F ; ~ ( O ) ]  -I- ..., 
(3.12) 

and where, to  four significant figures, &(O) = - C  = - 1.120, P;(O) = +0.1431, 
F;1,(0) = -0.002429 and Pk2(0) = -0.01181. Note that, as long as all functions 
of r appearing in (3.12) are of order one, the coefficients of the powers em de- 
crease in magnitude by a factor of approximately 0.1 for each increase in m, 
a t  least up to m = 2. This indicates that the series (3.12) converges quite rapidly 
for values of E which are not infinitesimal, and that the first three terms as shown 
are a useful approximation to the true solution. 

This is borne out by computations of ql,  carried out for the case when p(7) 

takes the form (2.8),  with various values of the amplitude parameter a and the 
frequency parameter E .  Figure 3(a )  shows plots of e4(x)q1(x,7) against 7, as 
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FIGURE 3. Plots of E*(x) ql(z, 7 )  against 7 ,  as computed from 1, 2 and 3 terms of (3.12) 
(broken line gives three-term expansion). (a) B = 2.0, u = 0.2. ( b )  e = 5.0, u = 0-5. 

22 FLM 55 
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computed from one, two and three terms of (3.12) respectively, for e = 2.0 and 
a = 0.2. The fact that the three-term expansion is so little different from the 
two-term expansion verifies that the expansion is accurate, even for this 
value of E .  The corresponding curves for a = 0.5 are very similar, except that 
in the range 7 ~ / 5  < 7 < 33n-120 (near the point of minimum wall shear) the 
difference between the three- and the two-term expansions becomes as large 
as (not larger than) that between the two- and the one-term expansions, 
indicating a lack of convergence, and hence of accuracy, there. The corresponding 
three-term curve for a = 0.8 develops a second peak near the point of minimum 
wall shear; this is unlikely to be genuine because, a t  this point, as a increases, 
p(7)  decreases and the condition (2.9) is not well satisfied. The method of solution 
breaks down completely a s p  approaches zero. When E is reduced to 0.5, even the 
a = 0.8 curves are very accurate. When E is as high as 5.0, the difference between 
the three- and the two-term expansions is about the same as that between the 
two- and the one-term expansions, when a is equal to 0.2 or 0.5 (figure 3 ( b ) ) ,  so 
that (3.12) will not give an accurate result, although it can still be used to give 
an idea of the difference in amplitude and phase between the unsteady (3-term) 
and the quasi-steady (1-term) solutions. I n  the a = 0-8 case with E = 5.0, (3.12) 
gives completely unreliable results in the neighbourhood of the shear minimum, 
although near the maximum it is still well behaved and may be used with some 
confidence. 

An idea of the variation of the heat transfer with E ,  for fixed a, can be obtained 
from figure 4. Here the 3-term expansion for d q l  is plotted against r for various 
values of e and for a = 0.2. Note how, as e increases, the maximum heat transfer 
is slightly reduced, while the minimum is a t  first slightly increased (causing a 

E 

0 
1 .0 
2.0 

1.00 I I I I I 
0 i n  n t n  2 n  

7 

FIGURE 4. Plot of et(z) pl(z, T )  against T ,  as computed from 3 terms 
of (3.12). a = 0.2, E is varied. 
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decrease in amplitude), but is then reduced quite rapidly, although this last result 
is somewhat doubtful because of the inaccuracy of the solution near the minimum 
for large s. Note too how the phase lag of the heat transfer increases with e, 
as we would expect. The mean heat transfer, obtained by integrating (3.12) over 
a complete cycle, also decreases with E, albeit slowly, indicating that the oscilla- 
tions slightly reduce the sensitivity of a hot film to a given mean flow. 

4. Asymptotic expansion for large E ( X )  

In  this section p(7) is restricted from the start to the sinusoidal form (2.8); 
this restriction is not wholly necessary, but it is important to separate the mean 
part of j3 from its oscillatory part, and it is convenient to be able to integrate the 
oscillatory part. The form (2.8) is therefore chosen as a simple example; a more 
complicated function, like that describing blood flow in a small artery (small 
enough for there to be no flow reversal), could be substituted. In  the limit as the 
amplitude a tends to zero, the solution of (2.5) must reduce to the steady solution 
(3.5), with q replacing q’. Thus the variable q is suitable for discussing a t  least 
the mean temperature distribution when a is non-zero. On the other hand, the 
variable [, given by (2.10), must be used to consider the rapidly oscillating 
unsteady part of the solution, as was argued in $ 2 .  The method of matched 
asymptotic expansions will therefore be used to link the two solutions. In  order 
to avoid ambiguity, we shall use different symbols for the quantity 8 according 
to which expansion, inner or outer, is under discussion. The outer representation 
is 0 = g(7, x, 7)  and the inner is 0 = O(7, x, 6). 

From (2.4), (2.10) and the definition (2.6) of s, we see that 7 = s-$5. This 
suggests that a convenient small parameter to choose in the case of large s is 

y(x) = s-i(x). (4.1) 

We shall seek an asymptotic solution in the form of a power series in y (for once, 
logarithms need not be introduced) with the object of calculating the heat 
transfer up to the term in y7. It turns out that a t  and beyond this order the heat 
transfer cannot be completely determined, because of the appearance of arbitrary 
constants, multiplying eigenfunctions of the governing equations and boundary 
conditions, which cannot be eliminated. Indeed, the mean value of the term in 
y4 is itself arbitrary, although the first time-dependent term to contain an 
arbitrary constant is that of O(y7). The appearance of eigenfunctions is not, in 
fact, surprising, because our expansions are actually co-ordinate expansions, 
since e cc x*. Now the governing equation is parabolic in x, so only the small-s 
expansion (valid as x increases from zero) is determinate; the large-s expansion 
(in which x decreases from infinity) will inevitably be indeterminate as it cannot 
take account of conditions upstream. This is a familiar problem and there are 
no known means, short of obtaining an exact solution, of solving it. Nevertheless, 
the first few terms of the large-s expansion, in which the indeterminacy has not 
become important, can still be useful, as is claimed to  be the case here. We may 
note that the eigenfunctions referred to above are the eigenfunctions of the 
steady boundary-layer equations; there are, however, no intrinsically unsteady 

22-2 
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eigenfunctions which fall off exponentially with x, in contrast with the corre- 
sponding viscous boundary-layer problem (Pedley 1972). 

4.1. The outer expansion 

In  terms of the outer variables, (2.5) may be written as 

The boundary condition as 7 -+ 00 is that 0 --f 0 exponentially, but on 7 = 0 the 
condition 8 =  1 may not apply, because the inner region can remove some 
singularities there. The other condition to be imposed on the outer solution is 
that e” N F(7) ,  given by (3.5), as a + 0 for all y .  

Q7 = y2(x) {Oq7 + ( 1  +a sin T )  (37207 - 97xOZ)}. (4.2) 

We seek to  express the solution of (4.2) in the form 

(4.3) 

Substituting in (4.2) and equating like powers of y ,  we obtain a series of equations 
for the as follows: 

The first of these equations (n = 0) implies that go is a function of 7 only. 
Bearing in mind the condition as a -+ 0, we may write 

0 0  = _F”(7) + g(a).fo(7), 

e”27 = a sin 7 3 7 2 ~ ’  + g(a) (f;[ + 372f~ + a sin T 372fh), 

where g(a) = o(1) as a 3 0 andf, is as yet arbitrary. Putting n = 2 in (4.4), we 
obtain the following equation for 0,: 

(4.5) 

where some terms are omitted because F ( 7 )  satisfies (3.4). Now we expect steady- 
state oscillations in the temperature field to result from steady-state oscillations 
in local wall shear; secular terms, growing indefinitely with time, must be absent. 
However, on integrating (4.5) we see that g2 will have such a term unless fo 
also satisfies (3.4). If, in addition, fo is to satisfy the boundary condition at 
infinity, it must be proportional to F(y ) ,  sayfo(7) = a,F(r). By integrating (4.5), 
and using the definition of F(q) ,  we obtain 

O2 = 3Cacos~q2e-7~ (1 +aog(a)) +f2(7) ,  (4.6) 

where f2(7) is arbitrary. 

to give 
The fifth (n = 4) and seventh (n = 6) of equations (4.4) can also be integrated 

g4 = 6Ca sin T e-7’ (1 - 3y3) (1 + uog(a)) - $Ca2 cos 27 e-7’ (4q3 - 3q6) 

x (1+aog(a))+az[...I+f4(7) (4.7) 
and 

g6 = - 9Ca COB 7 e-7’ {6y4 - 89 + $a2( - 2771° + 9077 + 1274 - 167) 

+ (a4/3C) [374U’( - f 2 3 ,  73) + ( 47-374) U ( - $  7 2 39 v3)I) 
- $Ca2 sin 27 e-7’ (361’ - 99v4 + 207) 

+ #Ca3 cos 37 e-7’ (9q10 - 427’+ 2 8 ~ ~ )  +fs(7), 
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where a, and a4 are defined below. The requirement that secular terms be absent 
in the equation for means that the functions of integration f, (m = 2,4,6) 
must satisfy the equation 

The solution satisfying the boundary condition at  infinity is 

f, = a, e-9' u[ - 3(m - Z), Q ,  r3] - S4,$Caz e-7' (2 + 6r3 - 9$), (4.9) 

where the a, are constants to be determined by matching. It is not necessary 
to calculate the function multiplied by uz in (4.7), because a2 is subsequently 
shown to be zero. 

The odd-numbered terms of the outer expansion are calculated in a similar way. 
The result of integrating the equations (4.4) with n = 1, 3 ,5  and 7 and applying 
the condition that none of the functions g3, g,, 6, and can grow with time is 

(4.10) 

Terms multiplied by a, and a, are not calculated because these constants are 
subsequently shown to be zero; further, the polynomial function U( - Q, Q ,  73) 

has been written out in full except where it first appears (see appendix, where, 
also, a; is defined). 

Most of the coefficients a, (n = 0,1, . . . , 7 )  are obtained from a consideration 
of the inner expansion. The outer boundary condition (5  -+ m) on the terms of 
the inner expansion is that they should match with the outer expansion in the 
limit r( = 75) -+ 0. To obtain this limit, we must rewrite the outer expansion in 
terms of the inner variable 6 and expand in powers of y ;  we have taken the ex- 
pansion up to O(y7) .  The expansions used for the confluent hypergeometric 
functions are given in the appendix, where the constants a:, used below are 
also defined. 

4.2. The inner expansion 

In  terms of the inner variables, (2.5) becomes 

@cc- o, = y3(1+ a sin 7) x ~ ~ X : X O , .  (4.11) 

The boundary condition a t  5 = 0 is 0 = 1, and as 6 + 00 the inner expansion must 
be matched with the outer. We seek a solution in the form 

m 

n=O 
@ = X yn(x) @n(5, 71, 

which leads to a series of equations for the functions 0, as follows: 

(4.12) 

} (4.13) 
0 (n = 0,1,2), 
- (1  +a  sin^) 3(n - 3 )  <@(,-3) (n > 2). Ong- on, = 
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The boundary conditions on 5 = 0 are 0, = 1, On,, = 0; those as 5 --f 00 are 
obtained from (4.10). 

Thus the problem to be solved for 0, consists of the following equation and 
boundary conditions: 

OOss = aO7; OO(O,r) = 1, 0,(00,~) = l+u,g(a) .  (4.14) 

If a, is non-zero, this problem can be solved only by similarity solutions in terms 
of the variable g2/7 and is not fully determined because of the absence of initial 
conditions. We rule out such ‘diffusing solutions’ on the grounds that we are 
interested only in the asymptotic steady-state oscillations for arbitrary initial 
conditions, not in the transient terms. The problem (4.14) then has a solution only 

(4.15) 
if a, is zero, and in that case 

Thus the leading term in the inner expansion is trivial and the leading term of 
the outer expansion is a complete first approximation to the solution. To this 
order of approximation, the inner layer does not exist. 

The next term, 0,) satisfies the same equation as 0, and is subject to the 
boundary conditions 0,(0) = 0, O1(m) N - Cg+ u;. Again, there is a consistent 
non-diffusing solution only if a, = 0, in which case 

0, = 1. 

0, --= -cg. (4.16) 

Similarly, we prove that u2 = 0 and that 

0 = @  = o .  

The problem for 0, is not trivial, however. The equation to be satisfied, (4.12) 

046c - a,, = 3C[2( 1 + 01 sin r )  with n = 4, is 

and the boundary conditions are 0,(0) = 0 and, as C-+ co (from (3.5)) (4.6), 
(4.7) and (4.10)), 

2 -  3 -  

0, N $Cc4 + ui 5 + 3Ca cos rc2 + 6Ca sin r - $Ca2 + u;. 

There is a solution of the required type only if 

u; = $Ca2, 
and in that case 

0, = &?5*++;5+ 3Cacosrg2+ 6Ca[s inr-ee-6 /~2s in(r -~ /~2)] .  (4.17) 

There is no way of determining u3, and it must remain arbitrary. This will be 
true of all u3p ( p  = integer 2 I )  since the fkctions f S p  are eigenfunctions of the 
problem (f3JO) = 0: see appendix). 

The problems for 0, and 0, are again very simple, and lead to the conclusions 
that u5 = 0,  and 

(4.18) 
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Finally, the problem for 0, can be solved to give a7 = 0 and 

1 
3a 

- ~ * C 9 7 - a ; ( ; 4 - 6 C a 2 c 3 + a ~ 9 +  9Ca2Re - 4(i5+2k)e45+-et7 0 - -__ 

+ e2i7 [ - c3 + 5iy+ 4( - ic+ 2k) e-kc - 8k e-kcd2] , I 
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(4.19) 

where it will be noted that the two arbitrary constants a; and a; still appear, 
and k = (1  + i ) / 4 2 .  

Let us denote by q2(x, r )  the dimensionless heat transfer as calculated from this 
high-s theory; (3.12) defines pl(x,7) as the same quantity calculated from the 
low-s theory. Then, from (4.16)-(4.19), 

= yC - y4{342Ca(cos r + sin r )  + a;} + y5a2a; - y7{a; + 1842 Ca 
x [cos 7( 1 + 242 - 2a;/3C) - sin T(  1 + 2a;/3c)]  - 9Ca2 sin 27(8,/2 - 7 ) } ,  

(4.20) 

where 342 C = 4.751 and a; = 2.575 to four significant figures, and a; and a; are 
still arbitrary. 

Considerations similar to those used for the small-s expansion indicate that 
(4.20) is as accurate for s 20.0 as (3 .12)  is for s < 2.0. Figure 5 ( a )  shows (4.20) 
with the O(y), O(y4)  and O(y7)  terms included for s = 20, a = 0.5;  the O(y7) 
expansion is much closer to the O(yP) expansion than that is to the O(y) expan- 
sion. Here the computations have been made with the non-zero value of a; 
obtained below, and with a; = 0. Equation (4.20) is still useful when s is as low 
as 10.0 (in the same way that (3.12) was useful for E = 5.0),  as is shown by 
figure 5 ( b ) ,  which shows the same curves as figure 5 ( a )  with s = 10.0, except 
that a; = 0 (the a; =+ 0 curve is the broken curve). Here there is no wild 
behaviour for the larger values of a. 

The questionwhichnow arises is howto join the low-sand the high-sexpansions, 
and how to choose a;, etc. Neither expansion is expected to be accurate in the 
range 5.0 < s < 10.0, so it is unlikely that both expansions will give the same 
results at a particular value of s. An exact numerical solution is really the only 
way to effect a proper joining and to determine a;, but the approximate method 
which we actually choose is to find that value of s for which the amplitude of 
heat-transfer variation is the same in either expansion when a = 0.2, a; = 0 and 
a; = 0. The value of s thus chosen lies between 8-0 and 9.0, and the closest whole 
number is 8.0. We therefore assert that the small-s expansion is approximately 
valid for s < 8.0 and the large-s expansion is valid for s > 8.0. In  figure 6 ( a )  
we plot both &q1 and d q ,  against r (for a = 0.2) ,  to show that, although the 
amplitudes of the two curves are approximately the same, the shapes and phases 
are somewhat different. Nevertheless, the phases have approached each other: 
the phase lag of the maximum heat transfer has increased to about in in the 
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FIGURE 5.  Plot of p2(z, 7 )  against T, as computed from the O(y),  O(y4) and O(y7)  expansions 
of (4.20). (a) E = 20.0, a = 0.5. ( b )  E = 10.0, a = 0.5; ---, a, = 0;  ---, a, + 0. 

small-s expansion, and has decreased from its asymptotic value of &r to about 
+jn- in the large-s expansion. Figure 6 (b )  shows the same pair of curves for 01 = 0.5, 
and, inevitably, the difference between the two expansions is more marked. The 
joining becomes less valid as a is increased. 

We can now account for upstream conditions by choosing a; so that, for 
each value of a, the mean heat transfer is the same in either expansion for s = 8.0. 
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FIGURE 6. Plots of &(x) pl(x, T )  and d(z) q2(z, T )  against T .  

B = 8.0, a, = 0. (a)  a = 0.2, ( b )  a = 0.5. 

This is still an arbitrary choice (we also, arbitrarily, keep a; = 0, but this will 
have little effect on (4.20)), but is likely to give the right order of magnitude for u;. 

(4.21) 

The condition gives 

the last of these is suspect because of the behaviour of the small-e expansion for 
large a and E .  The small effect of this value of aj  on the large-€ expansion for 
E = 10.0, a = 0.5 can be seen from the broken curve in figure 5 ( b ) .  The a = 0.2 
curve, with non-zero a;, is barely distinguishable from the a; = 0 curve. The 
a = 0.8 curve with a; =t= 0 is not approximately the same as that with a; = 0 
which reflects the uncertainty about our choice of a; at this value of a. 

i 0.0452 for a = 0.2, 

-1-67 for a = 0-8; 
0-167 for a = 0.5, 
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There are other possible ways of choosing the value of s at which the expansions 
should be joined. One might expect that both expansions are most accurate near 
the point of maximum wall shear; we could then find that value of s at which the 
magnitude and phase of the maximum heat transfer are the same in each ex- 
pansion. A plot of these quantities shows that, for a = 0.2 and a3 = 0, this leads 
to a value of s lying between 9.0 and 10.0. However, for a! = 0.5, the situation is 
complicated by the appearance of a large second peak in the small-s curve (see 
figure 6 ( b ) ) .  If this peak is taken to be the true maximum, the cross-over value 
of 8 lies between 7 and 8 for magnitude and between 6 and 7 for phase. I f  only 
the first peak were taken as genuine, there would be no cross-over for e < 10. 
Clearly our choice of 8 = 8.0 is fairly arbitrary, but not unreasonable. 

5. Application to the hot-film anemometer 
In  this section we apply the above theory to the hot-film anemometer probe 

described in 0 1 and depicted in figure 1. If we assume that the flow is two- 
dimensional and, further, that the surface of the probe is flat, resembling a semi- 
infinite flat plate, then the flow in the viscous boundary layer over the probe is 
given by the theory of Pedley (1972) with n = 0. In  the unsteady calibration 
experiments of Seed & Wood (1970b), the velocity of the fluid relative to the 
probe was U = U, V(T),  where 

V(r )  = 1+a1sin7, (5.1) 

so that the value of the wall shear S/3(r) is given by either the first two terms of 
(2.6) or (3.27) of Pedley (1972) according to whether 

El = w~o/uo (5.2)  

is less than or greater than 0.6. In  the experiments, w/2n  was varied between 
0.5 and 8.0 Hz, while U, was varied between 5 and 30 cm s-1 (except in some cases 
where the probe was oscillated in a fluid otherwise at  rest). Thus s1 varied be- 
tween about 0.01 and about 1.5. The amplitude parameter was varied from zero 
(steady flow) to values greater than 1, since the probe was designed to measure, 
a t  least approximately, the reverse flow occurring in arteries as well as the pre- 
dominant forward flows. We should restrict our comparison of theory and ex- 
periment not merely to values of a!1 less than 1 (for otherwise the theory of the 
companion paper is invalid), but to values of a1 less than that which causes 
a reversal of wall shear a t  the hot film for the given value of el, for otherwise 
the theory of this paper is invalid. Thus we should require 

where a,,(sl) is given by the n = 0 curve of figure 10 of Pedley (1972) or by 
equation (4.1) of that paper for s1 > 0.6. In  fact, results will be presented for 
values of a, greater than this, but will be limited to those parts of the cycle over 
which the wall shear both is positive and has been positive long enough for the 
warm fluid, convected back over the film during the phase of shear reversal, 
to be again convected past it in the forwards direction. 
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FIGURE 7. Heat transfer from the hot-film probe, plotted against r .  a1 = 0.2, el is varied. 

We choose S to be the wall shear in steady flow, given in the notation of 

s = U&(O) (2vx0)-4, (5.4) 
Pedley (1972) as 

wheref:(O) = 0.4696 to 4 significant figures. P(T)  is then determined by which- 
ever of equations (2.6) or (3.27) of Pedley (1972) is appropriate. The total heat 
transfer Q ( t )  from the hot film is calculated from (1.3), where q(x, t )  is given by 
(3.12) or (4.20) above according as E(Z) is smaller or greater than 8.0. If the small-s 
expansion is valid everywhere over the film, then, for given a, and el, Q can 
be expressed, from (3.1), as a power series in €(I) as follows: 

Now, e(Z) is directly related to el for any given probe in any given fluid, since, 
from (2.6), (5.2) and (5.4), we have 

E(1 )  = 9*02aqZ/xo)* sl, 

where a is the Prandtl number of the fluid. For this probe in water at 37°C 
(a = 4.6), ~ ( 1 )  = 2 . 4 6 ~ ~ ;  in blood a t  37°C (a = 26.4), s(Z) = 4 . 4 0 ~ ~ .  So for the 
maximum s1 of 1-5, e(Z) is equal to 3-69 in water at 37 "C and equal to 6.60 in 
blood at  37°C. Thus e(Z) < 8.0 in all the calibration experiments, and (5 .5)  
may be used to calculate the heat transfer. The two expansions for P ( T )  are still 
necessary according as el < 0-8 or el > 0.8. 
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The first results to be presented indicate how the probe in water responds to 
an increase in el (and hence e(1)) for a given value of a,. Figure 7 shows the curves 
for aI = 0.2. We see that the heat transfer from the film has a phase lead over 
the stream velocity, although we know it to have a phase lag behind the local 
wall shear. Thus, at these values of e and el, this phase lag is considerably smaller 
than the phase lead of the wall shear over the stream velocity, remarked on in 
the companion paper. This need not always be the case, for if e(1) were a much 
larger multiple of el than here, the phase difference between heat transfer and 
wall shear could become dominant. Indeed, at  the higher values of el, the trend 
is reversed in this case, because the phase lead of the wall shear is levelling off 
to its asymptotic value, while the phase lag of the heat transfer is still increasing 
rapidly. As el increases, the amplitude of the heat-transfer variation also in- 
creases, in a nonlinear manner. The results of figure 7 already show a discrepancy 
between this theory and the calibration experiments of Seed & Wood (1970b)) 
in that these authors never observed a phase lead of the maximum anemometer 
output over the maximum stream velocity, at  least not of the magnitude of that 
predicted here (up to 0-277). 

Direct comparisons of theory with experiment are possible only in the form 
of the ratio of the unsteady heat transfer to its quasi-steady value, i.e. the value 
which would be obtained for the same instantaneous velocity in steady flow. 
[See figures 6 and 7 of Seed & Wood (1970b); they plotted (V--q) / (K-%) ,  
where V is the voltage output of the anemometer, the quasi-steady output 
and V, the output in fluid at  rest. The heat-transfer ratio which we plot 
is ( V 2 -  Vg)/( V,2- 7;)) a quantity which has to be computed for each of 
Seed & Wood’s experimental points.] Two typical cases are shown in figures 8 (a)  
and (b) .  The case shown in figure 8(a) is one in which the wall shear P(T)  is never 
negative, so the theory should be everywhere valid. However, the departure 
from unity of the experimental and most of the theoretical values of the ratio 
is less than 10 yo, which is within the experimental scatter; such discrepancies 
as can be seen indicate that the theoretical departure from the quasi-steady line 
is greater than the experimental, both above the line and below it, A more variable 
case is shown in figure 8 (b ) ,  although here P(r) is negative over part of the range 
of r, and the theory is invalid over that part and for some time after p has be- 
come positive again. Over the region where the theory should be valid, it again 
shows greater departure from the quasi-steady state than the experiments, 
although the largest predicted departure occurs at the same time as the largest 
observed departure, when the theory is invalid. The chief qualitative difference 
between theory and experiment lies in the large negative departures from the 
quasi-steady line which are predicted but not observed. 

Seed & Wood (1970b, figure 7 )  plotted the experimental points from a number 
of cases against the ‘instantaneous frequency parameter ’ 

€2(T)  = €,/27TV(T) = U X o / 2 7 T ~ ( T )  (5 .6 )  

and found that all cases collapsed, more or less, onto a single curve. However, 
in all the cases plotted, the sinusoidal oscillation in velocity was achieved by 
oscillating the probe with the required frequency, and with a given spatial 
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FIGT~EE 8. Comparison of theory with experiment. Ratio of unsteady t o  quasi-steady heat 
transfer plotted against T .  (a)  el = 0.172, € ( I )  = 0.425, a1 = 0.52. (b) El = 0.297, 
~ ( 1 )  = 0.733, a, = 0.89. 

amplitude a = 0.45 em. Thus a, = aw/Uo = E , U / Z ~ ,  which is directly proportional 
to el. All the dimensionless parameters were therefore proportional to each other, 
and in this case the computations confirm that the results for a number of 
different values of el collapse almost onto a single curve. This is shown in figure 9 
for three different values of el with a = 0.45 em, together with the corresponding 
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FIGURE 9. Heat-transfer ratio plotted against the instantaneous frequency parameter ez 
(log-log plot). Curves give theoretical results. (i) a = 0.45 cm: -, = 0.297 ; - - -, 

give experimental results: 0 ,  corresponding to cwves (i) ; 0, curves (ii). 
el = 0.321; .-, el = 0.273. (ii) a = 1.05 cm: ~ , €1 = 0.140; ---, €1 = 0.136. Points 

experimental points (dots). Also shown are the theoretical curve and experimental 
points (open circles) for two cases with a different value of a (=  1.05 em), and 
hence a different constant relating ul and el. The theoretical curve is noticeably 
different from the previous one and, at least for the higher values of e2, the 
experimental points also lie some way above those for the smaller value of a. In 
other words, alarger value of u1 leads to a larger departure from the quasi-steady 
line, all other things being equal, as we would expect. The theory again disagrees 
with the experiments in predicting values of the heat-transfer ratio R signifi- 
cantly lower than one, and predicting departure from the quasi-steady line, 
i.e. I R - 1 I > 0.1, at a lower value of e2; for a = 0.45 cm, the theoretical value is 
e2 zz 0.035 and the experimental one is e2 M 0.1; for a = 1.05 em, the values are 
0.025 and 0.08 respectively. 

The theory does agree with experiment in that the ratio of the maximum 
heat transfer to the maximum quasi-steady heat transfer (corresponding to the 
peak velocity) does not depart by more than 10 yo from unity for any value of el 
(up to 1.1). However, even for el = 1.1, the value of e2 at the time of maximum 
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velocity is only 0.1, so the agreement is not surprising. This result makes it clear 
that an unsteady calibration of the probe based on peak velocities is likely to 
be misleading, because it concentrates on the point where the unsteady and 
quasi-stead y responses agree most closely, and ignores the discrepancies expected 
during the complete cycle. This was not important in Seed &, Wood's (1971) 
dog experiments because the quasi-steady calibration is accurate during systole. 

Most of the discrepancies between theory and experiment result from the 
phase lead remarked on above in connexion with figure 7. If that were absent, 
the heat-transfer ratio would depart far less from unity, except near the velocity 
minimum; Seed & Wood observed no phase lead. Now the phase lead in the wall 
shear, for a given value of el and al, is much reduced if the viscous boundary 
layer is subject to a favourable pressure gradient (see, for example, Pedley 1972). 
The probe shown in figure 1 is somewhat wedge-shaped, and more recent versions 
resemble a narrow-angled cone, both of which configurations do impose such 
a pressure gradient on the boundary layer. Calculations are currently proceeding 
for these two cases. Another assumption which might cause error and which is 
amenable to treatment is that the velocity profile is linear across the thermal 
boundary layer on the film. Here 

6 z= 3*6(2~xo/Uo)*, 6T,,, = 1*4(9DZ/S)*, (5.7) 

where the constants are taken to define the points at  which the velocity and 
temperature reach 99 % of their value in the free stream when that is steady. 
Thus 

for water at 37 "C and is not extremely small, so the effect of the curvature of 
the profile should be examined, especially at  the higher values of el, when the 
Stokes-layer thickness becomes small compared with the Blasius-layer thickness, 
and the curvature becomes more pronounced. 

ST/6 = 0*83(Z/~~o)*  = 0.20 

The effect of lateral convection will be negligible as long as 

v/6T u/x) 

where u and v, the velocity components in the x and y directions, are evaluated 
at a value of y of order 6,. However, in steady flow over a flat plate, they are 
given as y + 0 by (Rosenhead 1963) 

u M u 0 a z y p ,  w M (vU,/2x0)3(~a,y2/S2), 

where a2 is a constant M 0.47. Thus W X / U ~ ,  M x/4x0 < 25 here, since x < 1. Thus 
the approximation w = 0 is justified. Thermal end effects should also be examined 
to allow both for variation in the transverse direction and for breakdown of 
the thermal boundary-layer approximation in the longitudinal direction. Success 
of this latter approximation requires that the PBclet number NL (given by 2.1) 
be large enough. Here NL = 0.33g(1/x0)2 (U,x,/v)Q. 

The condition (2.2) then reduces to 

0.742UgS < $11 < 1 - 1*04U,2 

when U, is measured in cms-l, so that the boundary-layer approximation is 
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accurate to within 5 yo over 70 Yo of the film if U, > 10 cm s-l. Thus the approxima- 
tion is reasonable but can lead to some inaccuracy, and its effects should be 
examined in more detail, perhaps in a manner similar to that of Ling (1963) for 
the steady case. 

We have so far discussed only the calibration experiments in water, whereas 
the hot film was designed for use in blood. If whole blood is regarded as a con- 
tinuous Newtonian fluid, the only significant difference between blood at 37 "C 
and water at  37 "C is in the viscosity, which is rather more than five times 
greater, while the thermal diffusivities differ by less than 10%. The effect of 
this on the dimensionless parameters is to decrease NL, which reduces the accuracy 
of the boundary-layer approximation, and, for given el and al, to increase € ( I ) ,  
which both cuts down the accuracy of (5.5) and increases the departure from the 
quasi-steady state. This last fact means that if the only unsteady calibration 
studies have been in water, one can have confidence in the quasi-steady response 
in blood only for values of el smaller by a factor of about 0-6. 

The other problem about blood is that it is not a continuous Newtonian fluid. 
Typical shear rates within the viscous boundary layer are certainly greater than 
the value of 100 s-1 below which non-Newtonian effects are commonly observed 
(Merrill & Pelletier 1967), but towards the outer edge of the layer a t  all times, 
and everywhere in the layer a t  certain parts of the cycle, the shear rate can fall 
below this value. Furthermore, the maximum thickness of the thermal boundary 
layer is only about 40pm when the stream velocity is 100 cm s-l (from equation 
(5.7)), and this is only five times the diameter of a red blood cell. In  other words, 
the blood cannot really be regarded as continuous, let alone Newtonian. This is 
probably the cause of the surprising observation by Seed 6% Wood (1970b) that 
the slope of the linear relation between heat transfer and the square root of 
stream velocity in steady flow is the same for water as for blood, whereas i t  
should be proportional to pD8v-B (see equation (5.5))) and therefore smaller in 
blood by a factor of 0.72. 

Seed & Wood (1971) have used their anemometer to measure velocity profiles 
in the aorta of a dog, whose fundamental cardiac frequency varied between 1.3 
and 3.2Hz. The variation of velocity with time was of course not sinusoidal, 
containing important contributions from the first five harmonics and observable 
contributions from the next five, so that for complete accuracy the probe should 
respond to frequencies up to 32 Hz. The mean velocity U, varied between 8 and 
27 so that values of el up to 3-8 were encountered. Now the calibration 
experiments (and a fortiori the above theory) were restricted to el < 1.5, so 
the higher harmonics may not be recorded with complete accuracy. The first 
five, however (el < 1-9), were in general covered by the calibration experiments. 
The above theory is not applicable to the dog experiments because the ratio of 
peak-to-mean velocity is about 5 (al x 4), and considerable reversal occurs. 
The only part of the cycle to which it could be applied is early and middle systole, 
that is the acceleration phase and that part of the deceleration phase before the 
wall shear reverses. 

In a number of the animal experiments, the velocity on the axis of the dog's 
aorta was observed to fluctuate wildly, demonstrating the presence of turbulent 
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or at  least highly disturbed, flow. The origin of these disturbances is as yet un- 
determined and is the subject of a number of current investigations (Nerem & 
Seed 1972; Nerem et al. 1972). Any theory of the disturbances must explain the 
observations in detail; here it is appropriate to inquire into the accuracy of the 
observations, which were again made on the assumption that the response of 
the anemometer was quasi-steady. Because the disturbances are observed in 
the neighbourhood of peak systole, the velocity U, to be used in the calculation 
of el, for example, is the mean velocity a t  peak systole, which, in the experiments, 
ranged from about 100 to 250 cm s-l. Thus, although frequencies up to 400 Hz 
were encountered, the value of el lay mostly in the range covered by the water 
calibration experiments. It is true that a t  the highest frequency and the lowest 
velocity E ,  reached the value 3.8 and ~ ( 1 )  had the value 16.7, so that (5.5) is not 
valid and relatively large departures from the quasi-steady state could have been 
expected. On the other hand, the amplitude of the velocity fluctuations was small, 
so that a typical value of a, can be taken to be 0.05, which again limits the de- 
parture from the quasi-steady state. Even for the highest value of el for which the 
theory of this paper could be expected to apply (el = 1.88, €11) = 8.33 in blood), 
the predicted heat-transfer ratio departs from 1 by no more than 5%. Thus, 
as long as the frequency response of the electronic equipment is adequate, one 
can have confidence in the observations. 

6. Application to mass-transport experiments 
The situation envisaged here is that of fully developed unsteady flow in a long 

straight pipe (radius a )  with inert walls, of which the section 0 < x < 1 has been 
replaced by part of an artery which can take up labelled cholesterol from the 
flowing blood (see Q 1) .  The diffusivity of cholesterol, particularly when associated 
(as it is) with a large lipoprotein molecule (molecular weight z lo6), is so low that 
i t  is expected that the theory of § 4 €or large E will be valid almost everywhere in 
the section of artery, as we confirm below. The relationship in fully developed 
unsteady flow between the wall shear and the average velocity across the pipe 
is usually expressed implicitly by working out the response of each to an imposed 
sinusoidal pressure gradient (Womersley 1957). However, it is a simple matter to 
combine these relationships to show that the wall shear S ( l + a s i n ~ )  is asso- 
ciated with the following average velocity: 

U(T) = &!3a{l+ ap sin (7 - O ) } ,  (6.1) 

x2 = wa2/u. (6.2) 

where p and 8 are functions of the governing dimensionless parameter x, given by 

In  haemodynamics, x is usually called the ‘Womersley parameter’. The quan- 
tities ,u and 8 are tabulated for a number of values of x in table 1 ; also given are the 
corresponding frequencies f (  = ~ 1 2 7 7 )  for this case, for which a = 0.15 em and 
u = 0.038 cm s-1. The wall shear leads the average velocity by an amount which 
increases with x; the amplitude of the wall-shear variations is correspondingly 
greater than that of the velocity. 
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f (s-9 X P 8 (rad) 

0.49 1.35 0.994 0.075 
1.07 2.00 0-973 0-161 
1.49 2.35 0-953 0-216 
2.03 2.75 0-917 0.282 
2-50 3.05 0.885 0.331 
3-02 3.35 0.850 0.376 

TABLE 1 

The mass transfer per unit length of the artery segment will be 2nq(x, t ) ,  and 
q(s,t) will be given by its dimensionless form q2(x ,7 )  from the large-€ theory 
(see equation (4.20)), for all values of x for which e (x )  > 10; below this value, the 
large-e expansion becomes increasingly inaccurate (see $4). Now in the steady 
experiments of Caro & Nerem (1972), the average velocity Uo( = &Ya) was 
40 cms-1 or less. Also, in any unsteady experiments, the frequency f used is 
unlikely to fall below 0.5 Hz, when it would be outside the physiological range 
of either man or laboratory animals. Thus the lowest possible value of E for a given 
x is given (from equation (2.6)) by 

E = 0.13xfD-f. 

Now Car0 & Nerem assumed a value of D of 3 x cm2 s-l, so that E > 10 for 
x > 0-1 cm, i.e. for effectively the whole arterial segment ( I  = 5 em). For any 
lower Uo or higher f, the quoted value of x is reduced. We may use (4.20) over 
much of the segment only if the concentration boundary-layer thickness is much 
smaller than u a t  x = 1. From (5.7), dTm& s 9 x when D = 3 x low8 om2 s-l 
and U ,  = 5 cms-l (a reasonable lower limit), so that even in this 'worst' case 
the assumption of a linear velocity profile is perfectly valid. 

Application of the results of 3 4 shows that the effect of the oscillations is in 
fact negligible. The only quantity which can be measured in experiments such 
as those described is the mean mass transfer, as a function of x (i.e. of B ) ,  which 
is given by 

from (4.20). If we assume that a; = UQ = 0, then, even for 01. = 0.8 and e = 10.0, 
(6.3) gives a value less than $ % above the steady value C. If  u; is non-zero, and 
is given by (4.21), then for 01. = 0.5 and e = 10.0 the unsteady mean heat transfer 
is less than the steady value, but again by less than 4 yo. For 01. = 0.8, the dis- 
crepancy is about I0 Yo, but this is probably a reflexion of the uncertainty about 
a; for this value of a. 

These results are of course valid only when 01. < I, whereas physiologically 
motivated experiments would generally require values of a up to about 5 .  It 
seems reasonable, on the basis of Lin's (1956) work on the viscous boundary 
layer, t o  suppose that the case of reversing wall shear (a > 1) can be described 
by the present theory, when e is large, as long as the influence of the downstream 
end of the artery segment is not felt at the point x under consideration. In  other 
words, we require that no fluid particle within the concentration boundary layer 

eQ2 = c - y34 + y4O1.2u: - y6";, (6.3) 
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which has reached x = I should be convected back past the general point x. 
With the shear given by (2.8), and the concentration boundary-layer thickness 
8, given by (5.7), a particle a t  its edge has velocity 

u = 2.91(S2DZ)f(l+asin7), 

so the maximum distance reached upstream of x = I is approximately (by 
integration) 20(S2Dl)*/w when a = 5. This must be less than I - x for the theory 
to be valid; i.e. 

so that, as e(1) increases, the validity of the theory extends over a larger part of 
the segmen-t, when 01 > 1. 

An analysis of the diffusion entry length in fully developed oscillatory flow 
has previously been made by Fagela-Alabastro & Hellums (1969). Their analysis 
differed from this in that they considered only small amplitude oscillations and, 
further, they used expansions in powers of the parameter x2 or 2-l (x was called 
o in their paper) to treat the relationship between the mass transfer and wall 
shear as well as that between wall shear and average velocity. Thus a further 
dimensionless parameter representing downstream distance, = 4DxISa3, was 
required. In  this paper these two parameters are combined in the parameter 

89/€(Z) < 1 -xp, 

E = ( $ ) + r T X 2 @ ,  

where r~ is the Schmidt number of the fluid concerned. As a result, it is difficult 
to compare the results of the two sets of calculations: for example, the diagrams 
in Fagela-Alabastro & Hellums (1969) show that the low-x solution is very 
accurate for x < 0.25 when $ = 0.002. In  our notation, this would show that the 
1ow-e solution is accurate for E < 0.0017r~. However, the value of r~ used by these 
authors is not given, which precludes direct comparison. The range of Schmidt 
number mentioned in their introduction, 103-104, gives an upper limit for the 
validity of the low-E solution in the range 1-7-17, which contains our cross-over 
value of 8. 
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Appendix 

defined in terms of that of the first kind, M(a,  b,  x), by 
The confluent hypergeometric function of the second kind, U ( a , b , x ) ,  is 

“1 +a- b, 2 - b, x) - X I - b  

where 
00 a(a+ 1) ...( a+n- 1) xn 

M(a*b,z) = l + , I ; , b ( b + l ) . . . ( b + n - l )  a 
23-2 
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(see Abramowitz & Stegun 1965, p. 504). As x + co, we have 

M(u, b,x)  N - we a-b , U(a,  b , x )  - 
r ( a )  

which explains our rejection in the text of e-x M(a,  b, x) as a solution satisfying 
the boundary condition a t  infinity (except when a is a negative integer, when M 
and U are proportional). 

Those U-functions used in $ 4  are expanded below in powers of x u p  to  xQ: 

alU(+,g,x) N a;(l++x)(l-3Gx*),  

a2 U(O,g, x) 3 a;, 

a3 U (  - Q, Q ,  x) = a@, 
a4 U(  - 8, Q ,  x) z a:{ 1 - x - 6Gx*( 1 - ax)}, 
a5 U (  - I ,  Q ,  x) 3 al(1- 4x1, 
a6 U(  - Q, g, x) = alx*(I - $31, 

a, U( - $, $, x) 21 as{ 1 - #x - J$Gx*( 1 - $)I, 
where 

and I 2na, 
for n = 1,2,4,5,7, 

39r(~) r(i - i n )  

- 2na, 
34 r($) r[+(2-n)] 

for n = 3,6. 

a; = 

Note that every third function in this sequence is a transcendental function, 
while the remainder are polynomials. 
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